AttributeError: '_MultiProcessingDataLoaderIter' object has no attribute 'next'

回答 2 浏览 1.4万 2022-11-02

我试图用Torch Dataset and DataLoader加载数据集,但我得到了以下的错误。

AttributeError: '_MultiProcessingDataLoaderIter' object has no attribute 'next'

我使用的代码是:

class WineDataset(Dataset):

    def __init__(self):
        # Initialize data, download, etc.
        # read with numpy or pandas
        xy = np.loadtxt('./data/wine.csv', delimiter=',', dtype=np.float32, skiprows=1)
        self.n_samples = xy.shape[0]

        # here the first column is the class label, the rest are the features
        self.x_data = torch.from_numpy(xy[:, 1:]) # size [n_samples, n_features]
        self.y_data = torch.from_numpy(xy[:, [0]]) # size [n_samples, 1]

    # support indexing such that dataset[i] can be used to get i-th sample
    def __getitem__(self, index):
        return self.x_data[index], self.y_data[index]

    # we can call len(dataset) to return the size
    def __len__(self):
        return self.n_samples

    dataset = WineDataset()
        
    train_loader = DataLoader(dataset=dataset,
                              batch_size=4,
                              shuffle=True,
                              num_workers=2)

我试着让num_workers=0,仍然有同样的错误。

Python version 3.8.9
PyTorch version 1.13.0
Adham Enaya 提问于2022-11-02
2 个回答
#1楼 已采纳
得票数 25

我也遇到了同样的问题,当我试图调用next()方法时,如下所示

dataiter = iter(dataloader)
data = dataiter.next()

你需要用下面的方法来代替,它可以完美地工作。

dataiter = iter(dataloader)
data = next(dataiter)

最后,你的代码应该如下所示。

class WineDataset(Dataset):

    def __init__(self):
        # Initialize data, download, etc.
        # read with numpy or pandas
        xy = np.loadtxt('./data/wine.csv', delimiter=',', dtype=np.float32, skiprows=1)
        self.n_samples = xy.shape[0]

        # here the first column is the class label, the rest are the features
        self.x_data = torch.from_numpy(xy[:, 1:]) # size [n_samples, n_features]
        self.y_data = torch.from_numpy(xy[:, [0]]) # size [n_samples, 1]

    # support indexing such that dataset[i] can be used to get i-th sample
    def __getitem__(self, index):
        return self.x_data[index], self.y_data[index]

    # we can call len(dataset) to return the size
    def __len__(self):
        return self.n_samples

    dataset = WineDataset()
        
    train_loader = DataLoader(dataset=dataset,
                              batch_size=4,
                              shuffle=True,
                              num_workers=2)

dataiter = iter(dataloader)
data = next(dataiter)
Syed Jameel Ahmed 提问于2022-11-05
Syed Jameel Ahmed 修改于2022-11-05
#2楼
得票数 2

在pytorch 1.12中,语法是:

iter(trn_loader).next()

工作正常以及:

next(iter(trn_loader))

从pytorch 1.13开始,唯一可以工作的语法是:

next(iter(trn_loader))
ChaosPredictor 提问于2023-01-08